SUSTAINABILITY IN CITY PLANNING AND ARCHITECTURE – DESIGN CONSIDERATIONS

Drivers for Wood Construction 2023 Joensuu May 15-16 2023

Kimmo Lylykangas Professor of Architecture Academy of Architecture and Urban Studies Tallinn University of Technology

May 15, 2023

CONTENTS

- Introduction
- Buildings
- Cities
- Life cycle properties
- Future wood products

"I don't want you to listen to me, I want you to **listen to the scientists**. I want you to unite behind the science and I want you to take real action."

Greta Thunberg (2003-)

- Climate activist and initiator of school strike for the climate (Fridays for Future) action
- nominated for Nobel Peace Prize both 2019 and 2020

TAL TECH

 $\Delta F = aln(C/C_0)$

Svante Arrhenius (1859-1927)

- The first Swedish Nobel laureate: the Nobel Prize for Chemistry 1903
- The first scientist to calculate how changes in CO_2 levels in the atmosphere change the surface temperature through the greenhouse effect

TAL TECH

ANALYSIS

Verkkosaaren vähähiilinen viherkortteli Helsinki

- Design-and-construct competition in 2020-21
- 50% weighting from numeric indicators (energy efficiency, green factor, carbon footprint)
- multi-disciplinary teams
- Winner team:
 - Hartela Etelä-Suomi Oy Anttinen Oiva Arkkitehdit Oy Nomaji Maisemaarkkitehdit Oy

Image: Anttinen Oiva Arkkitehdit Oy

Tartu Down Architectur	ntown Cultural C al Competition	Centre ENG	TARTU	CULTURAL ENDOWMENT oF ESTON	
INDICATORS	OF ENVIRONMEN		CE		Ŧ
USER INPUTS Insert surface areas from Your competition entry, so and print to attach the results to the competition ma		RESULTS			
FLOOR PLAN EFFICIE Total net floor area SHAPE FACTOR	ENCY				400
Building envelope surface Floor surface area Intermediate floor area Window and glass wall are	area Om ² to ta Om ² to ta				
Exterior wall area without of Roof surface area Building envelope area tota Scroll down to specify the	openings 0 m² 0 0 m² al 0 m² materials and the PV surface area.	0 0.0 FLOOR PLAN EFF After area, entry / Aprogr	+ 0	0	0 + 0 0.0 0 0.0 0 00TPRINT PV 0UTPUT CO ₂ e) (MWh/a)
PRINT	SAVE AS XLS	SAVE IN LOG HELF	P LIGHT TIMBER FRAME	CLT FRAME CONCRETE FRAM	E BRICK WALL RESET PV
name of the competition e	ntry:	heck inputs! The total net floor are urrently smaller than the total pro Are all the spaces inclu	ea of the entry is grammed area. ded?		
					States and a second
USER VIEW PRIN	T VIEW DEFAULTS DATABAS	SE CALCULATOR LANGUAGES	S LOG HELP (+)	: 4	

+

GHG ACCOUNTING FOR CITIES AND REGIONS Two complementary approaches

ALTERNATIVE ALLOCATION PRINCIPLES:

TERRITORIAL APPROACH

 Today, most regions and cities apply territorial approach that assesses the direct greenhouse gas emissions within the geographic boundaries of the area of assessment, for example the city boundary.

CONSUMPTION-BASED APPROACH

 A consumption-based approach aims to assess the global greenhouse gas emissions of the local residents.

Currently, the best practise is to apply both of these approaches.

STATE-OF-THE-ART

- The GHG quantification methods for regions and cities are not harmonized (see for example Loiseau 2012, Dahal & Niemelä 2014, Seto 2014)
- Consumption-based GHG accounting (CBA) is gaining more and more foothold but is not likely to replace territorial GHG accounting approach (Afionis et al. 2017)

RECENT DEVELOPMENTS

Open data

From third-party statistical datasets towards casespecific data collection

Automatisation of data collection

Real time economy

From annual reporting towards continuous monitoring

Embodied emissions

Material-related emissions can be quantified with high precision due to BIM and building CF practice

"Digital Twin can be best characterised as a container for models, data and simulation.

...Enriched with **quantitative and qualitative empirical data**, Digital Twins serve as one promising approach for tackling not only the complexity of cities, but also to **involve citizens** in the planning process."

Dembski & Wössner (2019)

R. T. Tobiase

12096720x Jul 13 2050 00:31:24 UTC

CESIUM Oupgrade for commercial use. Data attribution Dec 24 2029 00:00:00 UTC

Dec 22 2039 00:00:00 UTC

Dec 19 2049 00:00:00 UTC

Dec 17 2059 00:00:00 UTC

Dec 14 2069 00:0 K 7

LIFE CYCLE PROPERTIES RL39§

photo: Vallo Vahesaar

1 DEMOLISHED

2 NEW (OFFICES)

3 MAINTAINED (TEST HALL)

Address Architect Interior architect Landscape architects Lighting designer Year of completion

Harju county, Tallinn, Mustamäe district, Mäepealse tn 3

Tõnu Laigu, Allis Mehide<u>,</u> Kristjan Lind Tarmo Piirmets Kadi Nigul, Kristian Nigul Marko Kuusik 2021

photo: Tõnu Laigu)

CIRCULARITY ASSESSMENT

Circularity index – four variables

- 1. type of connections
- 2. accessibility of connections
- 3. Crossings
- 4. form containment.

Kalle Kuusk, Michiel Ritzen, Patrick Daly, Dimitra Papadaki, Cecilia Mazzoli, Guzide Aslankaya, Jure Vetršek, Targo Kalamees (2022). **The circularity of renovation solutions for residential buildings.** In Conference Proceedings. REHVA 14th HVAC World Congress 22nd-25th May, Rotterdam, The Netherland.

Model based on: Alba Concepts (Accessed: 8 March 2022). Available at: https://albaconcepts.nl/circulairbouwen/

CIRCULARITY ASSESSMENT

5	Type of Connection	Accessibility of connection	Crossings	Form containment	Materials	Circularity index	Degree of circularity
Dutch (2D prefab)	0.68	0.87	0.83			0.80	high
Estonian (2D prefab)	0.83	0.83	1.00	0.83	0.42	0.78	medium
Greek (ETICS)	0.50	0.10	1.00	0.10	0.10	0.36	low
Irish (2D prefab)	0.84	0.64	1.00	0.83	0.44	0.75	medium
Italian (2D prefab)	0.71	0.88	1.00	0.70	0.54	0.77	medium
Italian (ETICS)	0.27	0.40	0.10	0.10	0.43	0.26	low
Slovenian (ETICS)	0.27	0.40	0.83	0.10	0.10	0.34	low
Spanish (PV facade)	0.82	0.85	1.00	0.82	0.49	0.79	medium

Tab. 10 - Circularity of renovation solutions.

Kalle Kuusk, Michiel Ritzen, Patrick Daly, Dimitra Papadaki, Cecilia Mazzoli, Guzide Aslankaya, Jure Vetršek, Targo Kalamees (2022). **The circularity of renovation solutions for residential buildings.** In Conference Proceedings. REHVA 14th HVAC World Congress 22nd-25th May, Rotterdam, The Netherland.

Model based on: Alba Concepts (Accessed: 8 March 2022). Available at: https://albaconcepts.nl/circulairbouwen/

LIFE CYCLE PROPERTIES RL39§

ALTERNATIVE ALLOCATION PRINCIPLES:

TERRITORIAL APPROACH

 Today, most regions and cities apply territorial approach that assesses the direct greenhouse gas emissions within the geographic boundaries of the area of assessment, for example the city boundary.

CONSUMPTION-BASED APPROACH

• A consumption-based approach aims to assess the global greenhouse gas emissions of the local residents.

Currently, the best practise is to apply both of these approaches.

FUTURE TIMBER SOLUTIONS MORE INTELLIGENCE, LESS PROCESSING

Cellulose insulation dampsprayed

Thermal insution material of wood chips and clay (instead of boron)

FUTURE TIMBER SOLUTIONS: PREVENT PROBLEMATIC WASTE IN END-OF-LIFE

FUTURE TIMBER SOLUTIONS: CREATE COMPONENT REUSE POTENTIAL

FUTURE TIMBER SOLUTIONS: HIGH PERFORMANCE WITH MINIMUM MATERIAL USE

Frei Otto: Mannheim Multihalle

"To accomplish a task with the mimimum of material is finally the only interesting problem."

Bernard Lafaille (1900-1955)

THANK YOU FOR YOUR ATTENTION

kimmo.lylykangas@taltech.ee

Kimmo Lylykangas Professor of Architecture Academy of Architecture and Urban Studies Tallinn University of Technology

May 15, 2023