Sustainability Index for Climate wise construction

By **Shammi Akter Keya** Architect, Project researcher, Karelia UAS

Joensuu City_ Application: ArcMap 10.8.1

About SBTCP

Sustainable Building Technologies- Community of Practices

Partnering Universities

- Karelia UAS, Joensuu, Finland
- Jade UAS, Jade, Germany
- Salzburg UAS, Salzburg, Austria

MINISTRY OF EDUCATION AND CULTURE FINLAND

Three Piers of Sustainability

WP1 Research HUB_ Karelia UAS

1. Bringing Wood Back to Cities

• Spatial Modelling for Climate Wise

Construction: An Urban Morphology-Energy

Consumption Nexus Based Framework

- Materiality and Urban Micro-climate: Impact of Building Envelope Material on Urban Micro-Climate
- Investigation of long-term **Indoor Air Quality** in wooden wall structures
- Sustainability Index development from the summary of earlier results

MINISTRY OF EDUCATION AND CULTURE FINLAND

Three Piers of Sustainability

WP1 Research HUB_ Karelia UAS

2. Competitiveness of wood

construction

• Key elements of **competitiveness of wood**

construction

- Competitiveness analysis by TALO 2000 categories
- **Potential of competitiveness development** in construction industry
- Holistic analysis of the competitiveness of wood construction

MINISTRY OF EDUCATION AND CULTURE FINLAND

INTRODUCTION

Question is...

How to develop a systematic and quantitative decision support system to optimize energy and

material usage in building and city scale?

Sustainability Index for Climate wise construction

- "The construction sector is not on track to decarbonize by 2050" (United Nations Environment Program's 2022 report)
- 7.3.29 romofethe Gabbaa a Gift Ga Ednissions is claused due to energy usage, Building sector holds 17.5% of the share (Climate watch, World Resources Institute, 2020)
 - 2. Revised definition of efficient district heating
- Buildings are responsible for 50% of extracted and cooling of waste and water use (Tokede et al., 2022; European Commission (2011))
 Buildings are responsible for 50% of extracted and cooling of the second se
 - The recent agreement by the European commission establishes an Edd pendigyadfficiencyticargetw alsoldoversotheor 2030 (European Commission (2023)) regional and local levels

Extreme Weather Vulnerability Index (EWVI) for Energy Consumption

Assessment equation by the Intergovernmental Panel on Climate Change (IPCC)

Vulnerability= *Potential Impact x (1- Adaptive Capacity)*

EWVI, $I_{SC} = Exposure, I_E \times Sensitivity, I_S (1 - Adaptive capacity, I_{AC})$

Exposure: Magnitude and duration of the climate-related stress

External Parameters (Summer + Winter)

Extreme Weather Vulnerability Index (EWVI) for Energy Consumption

Assessment equation by the Intergovernmental Panel on Climate Change (IPCC)

Vulnerability= *Potential Impact x (1- Adaptive Capacity)*

EWVI, $I_{SC} = Exposure$, $I_E \times Sensitivity$, $I_S (1 - Adaptive capacity, I_{AC})$

Sensitivity: The degree to which the system is likely to get affected

Internal Urban Morphological Qualities- Sensitivity

Extreme Weather Vulnerability Index (EWVI) for Energy Consumption

EWVI, $I_{SC} = Exposure$, $I_E \times Sensitivity$, I_S (1 – Adaptive capacity, I_{AC})

Adaptive capacity: The system's ability to withstand or recover from extreme events/damage

Adaptive Capacity

Extreme Weather Vulnerability Assessment in the City of Joensuu

Wintertime Potential Impact, PI_{winter} $= Exposure, I_E \times Sensitivity, I_S$ Summertime Potential Impact, PI_{summer} $= Exposure, I_E \times Sensitivity, I_S$ Total Potential Impact, PI_{Total} $= 0.75 \times PI_{winter} + 0.25 \times PI_{summer}$

Conclusions

Variability of microclimatic impact within the same City

Introduction	Materials & methods	Results	Conclusions
--------------	---------------------	---------	-------------

Building Specific Assessment

Building ID	PI	U value	Normalized U value	Building specific Vulnerability V= PI (1- AC)
А	0.36	0.64	0	0.36
В	0.36	0.19	0,957447	0.015
С	0.36	0.17	1	0
D	0.36	0.25	0,829787	0.06

Introduction

- U value adjustments
- Increasing carbon storage/constructed
 Carbon in buildings (e.g., usage of wood)
- Solar panel installation
- Facade greening
- User-orientated instruction

Building level intervention

Neighborhood level intervention

- Neighborhood greening zones for cooling
- Solar panel grids for heating
- Low carbon infrastructure
- Reduced road density

Thank you

