Tall Timber in 2023: Current State and Future Potential

Daniel Safarik *Director, Research and Thought Leadership*

Drivers for Wood Construction, Karelia University of Applied Sciences Joensuu, Finland 15 May 2023

Council On Tall Buildings and Urban Habitat

ADVANCING SUSTAINABLE VERTICAL URBANISM

Founded in 1969.

Non-profit, multi-disciplinary, worldwide association focused on tall buildings and sustainable cities.

The CTBUH organizational member network includes 2,000,000+ individuals working in 10,000+ offices around the world.

What We Do

Convene a Multi-Disciplinary Industry

Share Best Practice Information

Research Critical Industry Topics

Recognize Superior Urban Achievements

Track and Report Tall Building Info & Data

Advocate for Dense Urban Solutions

Understanding Mass Timber: Structural Material Classifications

Structural Material Classification: All-Timber Structures

All above-ground vertical, floor spanning, and lateral-force-resisting structural elements must be constructed from timber.

Structural Material Classification:

Concrete-Timber Hybrid Structures

All above-ground vertical, floor spanning, and lateral-force-resisting structural elements must be constructed from timber, concrete, or a combination of the two.

Structural Material Classification:

Steel-Timber Hybrid Structures

All above-ground vertical, floor spanning, and lateral-force-resisting structural elements must be constructed from timber, steel, or a combination of the two.

Structural Material Classification:

Concrete-Steel-Timber Hybrid Structures

All above-ground vertical, floor spanning, and lateral-force-resisting structural elements must be constructed from timber, steel, concrete, or a combination of the three.

*All data as of March 2023

Mass Timber Buildings, by Status

Proposed, under construction, and completed mass timber buildings, eight stories and higher.

Cross-Comparisons, by Region

Proposed, under construction, and completed mass timber buildings, eight stories and higher, by region.

Mass Timber Buildings, by Function

The number of under construction and completed mass timber buildings, eight stories and higher, broken down by function.

Mass Timber Buildings, by Region

The number of under construction and completed mass timber buildings, eight stories and higher, broken down by region.

Mass Timber Buildings, by Structure

The number of under construction and completed mass timber buildings, eight stories and higher, broken down by structural classification.

A Brief History of Tall Mass Timber:

Tallest Mass Timber Buildings

A graphical history of the tallest mass timber buildings in the world.*

* This timeline includes new construction only. Vertical extensions (De Karel Doorman; 55 Southbank) are not included. If included, De Karel Doorman, Rotterdam, at 70.5 meters, would be the tallest Mass Timber Building between 2012 and 2019, being surpassed by Mjøstårnet (85.4 meters).

A Brief History of Tall Mass Timber:

Timeline of Completions

Mass timber buildings worldwide, 8 stories and higher, by completion year.

Distribution of Structure Types

Global distribution of the tallest three buildings in each of the four structural categories.

Tall Timber Global Audit: Tallest 10 Mass Timber Buildings

Rank	Building Name	City, Country	Height (m)	Floor Count	Structural System	Function	Status (as of Feb 2022)	Completion Year
1	Atlassian Central	Sydney, Australia	182.6	42	Concrete-Steel-Timber Hybrid	Mixed-Use	Under Construction	2027
2	Ascent	Milwaukee, USA	86.6	25	Concrete-Timber Hybrid	Residential	Completed	2022
3	Mjøstårnet	Brumunddal, Norway	85.4	18	All-Timber	Mixed-Use	Completed	2019
4	HoHo Wien	Vienna, Austria	84.0	24	Concrete-Timber Hybrid	Mixed-Use	Completed	2020
5	HAUT	Amsterdam, Netherlands	73.0	22	Concrete-Timber Hybrid	Residential	Completed	2022
6	Sara Kulturhus	Skellefteå, Sweden	72.8	19	Steel-Timber Hybrid	Mixed-Use	Completed	2021
7	De Karel Doorman	Rotterdam, Netherlands	70.5	22	Concrete-Steel-Timber Hybrid	Mixed-Use	Completed	2012
8	55 Southbank	Melbourne, Australia	69.7	19	Concrete-Steel-Timber Hybrid	Mixed-Use	Completed	2020
= 9	36-52 Wellington	Melbourne, Australia	65.0*	15	Concrete-Timber Hybrid	Office	Under Construction	2023
= 9	Roots Tower	Hamburg, Germany	65.0*	19	Concrete-Timber Hybrid	Residential	Under Construction	2023

* Heights are estimated, based on the floor count of the building. The estimate has been arrived at by analyzing thousands of other buildings of the same function on the CTBUH database that do have confirmed heights.

Featured Research: Recent Mass Timber Research Projects

CTBUH Research Project: **Future Timber City** An Awareness and Educational Program for Future, Sustainable, Dense Cities

Project Start: August 2020 Project Completion: April 2023

BSLC Binational Softwood Lumber Council

Overview

Steering Committee

Milestones

Partner

Given the market trajectory of building materials for tall buildings, it is likely that mass timber will be a critical building component for cities of the near future. It is incumbent upon government and the leaders of the timber industry to accelerate research in this field. We seek to provide a framework for better understanding the character and dimensions of a future mass timber city, and help to make it a reality. This program supports the dissemination of best-practice information on the design, technologies, construction, and planning of mass timber buildings and larger timber communities—in addition to a thorough historical review on the topic through the creation of a full-length technical publication. These activities will also produce a short film that visually articulates the design possibilities of a full-fledged timber city to capture the imagination of the general public to the sustainable benefits of mass timber, as well as the building industry.

CTBUH Research Project: **Tall Timber Center Website**

CTBUH Research Project: Technical Guide

Pages: 334

Case Studies: 25

- In-Detail Examinations: **12**
- Projects "at-a-glance": **13**

Key Topics: 13

CTBUH Research Project: Technical Guide Series

Tall Timber: Mass Timber for High-Rise Buildings

Tall Timber: Mass Timber for High-Rise Buildings: **Detailed Case Studies**

2.1 Case Study

25 King

Brisbane, Australia

Background/Overview

Located in the heart of Brisbane's Royal

National Agricultural and Industrial

Showgrounds, 25 King (see figures

2.1.1 and 2.1.2) is one of Australia's

tallest and largest timber commercial

buildings. The site anchors one end of

King Street, a burgeoning precinct in

Brisbane whose planners are working

being through design. The building's

expression-marked on the exterior by

its ground-level timber colonnade and

"verandah" south façade—nods to the

partition walls and furniture where preferred

Showgrounds' historic pavilions and

traditional "Queenslander" buildings.

to prioritize sustainability and well-

Association of Queensland (RNA)

Owner/Developer Motivations Although the building was initially conceived as having a concrete

structure, the project site overlaps a

road tunnel; the potential complications

from this provided further incentive to

use a lightweight structural material

to achieve the desired height. When

company expressed a keen interest in

its commitment to sustainability, thus

driving the decision to use timber. The

a building that would communicate

engineering firm Aurecon was

secured as the anchor tenant, the

Project Base Metrics

Status

Completed: 2018 **Building Function**

 Office Structural Classification

All-Timber over Concrete

- **Structural Materials** Mass Timber:
- Columns (GLT): levels 2 to 10 Beams (GLT): levels 2 to 10 Floors (CLT): levels 3 to 11 Braces (GLT): levels 1 to 10 Core (CLT): levels 2 to 11
- Concrete:

Foundations Floors: levels -1 to 2 Columns: levels -1 to 1 Beams: levels -1 to 1

Building Milestone Dates

Construction start: May 2017 Completion date:

Construction period: 16 months

- Height Height to architectural top:
 - Height to tip: 46.8 meters

Building Floor Area

- 16,446 m²

- Number of Elevators

• 4

- 1,500 persons

- 1m 5m

Green

wall

Office

Levels 2-11: The typical office floor plan was designed to be flexible, allowing tenants to add

Level 1 (Ground Floor): Common amenities are located on level 1 for the building's tenants

tenant-furnished

▲ Figure 2.1.2. Ground and typical floor plans. ◎ Bates Smart, redrawn by CTBUH

developer and architect had confidence in this approach from prior success with

Core: levels -1 to 1

October 2018

- 46.8 meters
- Height to highest occupied floor: 34.4 meters
- Number of Floors
- Above grade: 11
- Below grade: 1
- Total gross floor area:
- Net internal area: 14,963 m²
- Area of building footprint: 1,863 m²
- Entire site/plot: 1,884 m²
- Site coverage: 99%

- **Building Occupancy**
- **Building Density**
- 11 m²GFA/person

Tall Timber: Mass Timber for High-Rise Buildings: Analysis, Lessons Learned, and Future Objectives

Introduction

This chapter collects the findings of individual case studies in Chapter 2 and the key topics/considerations provided by discipline experts in Chapter 3, subjecting them to a broader analysis and commentary, organized in the same order in which the same key topics and factors of analysis appear in each case study. The objective is to reach a broad set of conclusions about state-of-the-art methods in mass timber design for high-rises, before moving to lessons learned and future objectives.

The case studies (see Table 4.0.1) were selected from a broader tall timber audit pool researched by CTBUH on several bases: height, preponderance of available information, unique or differentiated use of timber as a material, and high levels of stakeholder participation in the research. The case studies are representative of the broad spectrum of mass timber high-rises currently constructed, but the data produced was not exhaustive across all factors in each. This section summarizes the gathered statistics collected for each case study in the guide. Where a substantial quorum of figures could be obtained, comparisons are drawn. Even in cases where relatively little data could be obtained, the data is nevertheless displayed where it is known, as the authors believe this is part of creating an authoritative reference for a new way of building.

Building Characteristics

Function

In terms of function, of the 12 case studies in the Guide, two are officeonly buildings, five are mixed-use, and five are either residential or hotel uses. Compared to the overall dataset of tall mass timber buildings, eight stories and higher (see *Chapter 1.3*, page 20), where 64 percent of the buildings are residential/or hotel functions, the case study residential/ hotel projects represent a smaller proportion (42 percent).

Height/Area

The two extremes in this guide are represented by the newest and tallest (Ascent, Milwaukee) and the

Office	Mixed-Use	Residential	Mixed-Use	Residential	Residential	
Completed: 2012	Completed: 2019	Completed: 2017	Completed: 2021	Completed: 2009	Completed: 2015	
Concrete-Timber Hybrid	All-Timber	All-Timber over Concrete	All-Timber over Steel-Timber Hybrid	All-Timber over Concrete	All-Timber over Concrete	
September 2011	April 2017	June 2016	November 2018	February 2008	April 2014	
September 2012	March 2019	October 2017	October 2021	January 2009	December 2015	
12 months	23 months	17 months	36 months	11 months	21 months	22.5 months
27 m	85.4 m	40.9 m	72.8 m	29 m	49 m	57.0 m
22 m	68.2 m	40 m	66.8 m	23.2 m	44.3 m	50.6 m
27 m	88.8 m	40.9 m	72.8 m	29 m	49 m	57.3 m
7	18	13	20	9	14	16
1	1	1	1	0	1	1
2,319 m²	11,480 m ²	11,547 m ²	28,000 m ²	2,750 m ²	8,080 m ²	17,366 m ²
1,774 m ²	11,300 m ²		27,867 m ²	1,861 m ²	5,830 m ²	15,080 m ²
301 m ²	3,752 m ²	1,686 m ²	5,957 m²	280 m ²	490 m ²	1,952 m ²
-	15,680 m ²	2,025 m ²	7,100 m ²	860 m ²	2,600 m ²	4,313 m ²
	24%	83%	84% m ²	33%	19%	54%
N/A	105	93	208	29	62	144
1	3	2	8	2	1	4
147 persons	913 persons	282 persons		118 persons		988 persons
15.7 m ² GFA/person	10.7 m ² GFA/person	40.9 m ² GFA/person		23.3 m ² GFA/person		21.8 m ² GFA/persor

Project Base Metrics						
Function	Office	Residential	Residential	Mixed-Use	Mixed-Use	Mixed-Use
Status	Completed: 2018	Completed: 2022	Completed: 2017	Completed: 2017	Completed: 2012	Completed: 2019
Structural classification	All-Timber over Concrete	Concrete-Timber Hybrid over Concrete	Concrete-Timber Hybrid over Concrete	All-Timber over Concrete	Concrete-Steel- Timber Hybrid over Concrete	Concrete-Timber Hybrid
Building Milestone Dates						
Construction start	May 2017	August 2020	November 2015	November 2014	Nov 2006, Mar 2011	October 2016
Completion date	October 2018	July 2022	May 2017	June 2017	October 2012	June 2019
Construction period	16 months	23 months	19 months	32 months	37 months	32 months
Height						
Height to architectural top	46.8 m	86.6 m	58 m	33.8 m	70.5 m	84 m
Height to highest occupied floor	34.4 m	79.4 m	54 m	29.2 m	66.1 m	79.2 m
Height to tip	46.8 m	86.6 m	58 m	33.8 m	71.2 m	84 m
Number of Floors						
Above grade	11	25	18	10	22	24
Below grade	1	0	0	1	1	2
Building Floor Area						
Total gross floor area	16,446 m ²	47,909 m ²	15,120 m ²	16,791 m ²	22,950 m ²	25,000 m ²
Net internal area	14,963 m ²	38,979 m ²	11,972 m ²	12,103 m ²	19,530 m ²	19,700 m ²
Area of building footprint	1,863 m ²	2,484 m ²	840 m ²	1,283 m ²	3,120 m ²	1,372 m ²
Entire site/plot	1,884 m ²	2,650 m ²	2,315 m ²	4,091 m ²		3,920 m ²
Site coverage	99%	94%	36%	31%		35%
Number of apartments	N/A	259	305	121	114	143
Number of elevators	4	3	2	10	4	6
Building occupancy	1,500 persons	2,623 persons	404 persons	2,058 persons		818 persons
Building density	11 m ² GFA/person	18.3 m ² GFA/person	37.4 m ² GFA/person	8.1 m ² GFA/person	-	31 m ² GFA/person

▲ Table 4.0.1. The project base metrics data from each case study provides a comparison of height, area, and occupancy.

Tall Timber: Mass Timber for High-Rise Buildings: **Detailed Case Studies**

25 King 2018 Brisbane, Australia 46.8 m / 11 Fl

Ascent 2022 Milwaukee, USA 86.6 m / 25 Fl

Brock Commons 2017 Vancouver, Canada 57.9 m / 18 Fl

Dalston Works 2017 London, UK 33.8 m / 10 Fl

De Karel Doorman 2012 Rotterdam, Neth. 70.5 m / 22 Fl

HoHo Wien 2020 Vienna, Austria 84.0 m / 24 Fl

Dornbirn, Australia

LCT ONE

27 m / 8 Fl

2012

Mjostarnet 2019 Brumunddal, Nor. 85.3 m / 18 Fl

Origine 2017 Quebec, Canada 48.0 m / 13 Fl

Sara Kulturhus 2021 Skellefteå, Sweden 72.8 m / 19 Fl

Stadthaus 2009 London, UK 29 m / 9 Fl

Treet 2018 Bergen, Norway 49 m / 14 Fl Tall Timber: Mass Timber for High-Rise Buildings:

Case Study Dimensions of Analysis

- 1. Owner/Developer Motivations
- 2. Cost Considerations
- 3. Carbon and Sustainability Overview
- 4. Use/Exposure of Mass Timber
- 5. Structural Systems
- 6. Code Considerations
- 7. Material Testing
- 8. Fire Safety Engineering
- 9. Acoustics
- 10. MEP Systems
- 11. Building Envelope

- **12. Construction Process**
 - a. Sourcing and Supply Chain
 - b. Prefabrication
 - c. Site Delivery
 - d. On-Site Construction
 - e. Tolerances and Accuracy Testing
 - f. Fire Protection During Construction
 - g. Moisture Management During Construction
- 13. Post-Occupancy Evaluation

Tall Timber: Mass Timber for High-Rise Buildings: Case Study Base Metrics

Project Base Metrics						
Function	Office	Residential	Residential	Mixed-Use	Mixed-Use	Mixed-Use
Status	Completed: 2018	Completed: 2022	Completed: 2017	Completed: 2017	Completed: 2012	Completed: 2019
Structural classification	All-Timber over Concrete	Concrete-Timber Hybrid over Concrete	Concrete-Timber Hybrid over Concrete	All-Timber over Concrete	Concrete-Steel- Timber Hybrid over Concrete	Concrete-Timber Hybrid
Building Milestone Dates						
Construction start	May 2017	August 2020	November 2015	November 2014	Nov 2006, Mar 2011	October 2016
Completion date	October 2018	July 2022	May 2017	June 2017	October 2012	June 2019
Construction period	16 months	23 months	19 months	32 months	37 months	32 months
Height						
Height to architectural top	46.8 m	86.6 m	58 m	33.8 m	70.5 m	84 m
Height to highest occupied floor	34.4 m	79.4 m	54 m	29.2 m	66.1 m	79.2 m
Height to tip	46.8 m	86.6 m	58 m	33.8 m	71.2 m	84 m
Number of Floors						
Above grade	11	25	18	10	22	24
Below grade	1	0	0	1	1	2
Building Floor Area						
Total gross floor area	16,446 m ²	47,909 m ²	15,120 m ²	16,791 m ²	22,950 m ²	25,000 m ²
Net internal area	14,963 m ²	38,979 m ²	11,972 m ²	12,103 m ²	19,530 m ²	19,700 m ²
Area of building footprint	1,863 m ²	2,484 m ²	840 m ²	1,283 m ²	3,120 m ²	1,372 m ²
Entire site/plot	1,884 m ²	2,650 m ²	2,315 m ²	4,091 m ²	-	3,920 m ²
Site coverage	99%	94%	36%	31%	-	35%
Number of apartments	N/A	259	305	121	114	143
Number of elevators	4	3	2	10	4	6
Building occupancy	1,500 persons	2,623 persons	404 persons	2,058 persons	-	818 persons
Building density	11 m ² GFA/person	18.3 m ² GEA/person	37.4 m ² GEA/person	8.1 m ² GEA/person	-	31 m ² GEA/person

Tall Timber: Mass Timber for High-Rise Buildings:

Case Study Base Metrics (Cont'd)

Average

Project Base Metrics							
Function	Office	Mixed-Use	Residential	Mixed-Use	Residential	Residential	
Status	Completed: 2012	Completed: 2019	Completed: 2017	Completed: 2021	Completed: 2009	Completed: 2015	
Structural classification	Concrete-Timber Hybrid	All-Timber	All-Timber over Concrete	All-Timber over Steel-Timber Hybrid	All-Timber over Concrete	All-Timber over Concrete	
Building Milestone Dates							
Construction start	September 2011	April 2017	June 2016	November 2018	February 2008	April 2014	
Completion date	September 2012	March 2019	October 2017	October 2021	January 2009	December 2015	
Construction period	12 months	23 months	17 months	36 months	11 months	21 months	22.5 months
Height							
Height to architectural top	27 m	85.4 m	40.9 m	72.8 m	29 m	49 m	57.0 m
Height to highest occupied floor	22 m	68.2 m	40 m	66.8 m	23.2 m	44.3 m	50.6 m
Height to tip	27 m	88.8 m	40.9 m	72.8 m	29 m	49 m	57.3 m
Number of Floors							
Above grade	7	18	13	20	9	14	16
Below grade	1	1	1	1	0	1	1
Building Floor Area							
Total gross floor area	2,319 m ²	11,480 m ²	11,547 m ²	28,000 m ²	2,750 m ²	8,080 m ²	17,366 m ²
Net internal area	1,774 m ²	11,300 m ²	<u>1</u>	27,867 m ²	1,861 m ²	5,830 m ²	15,080 m ²
Area of building footprint	301 m ²	3,752 m ²	1,686 m ²	5,957 m ²	280 m ²	490 m ²	1,952 m ²
Entire site/plot	-	15,680 m ²	2,025 m ²	7,100 m ²	860 m ²	2,600 m ²	4,313 m ²
Site coverage	-	24%	83%	84% m ²	33%	19%	54%
Number of apartments	N/A	105	93	208	29	62	144
Number of elevators	1	3	2	8	2	1	4
Building occupancy	147 persons	913 persons	282 persons	-	118 persons	-	988 persons
Building density	15.7 m ² GFA/person	10.7 m ² GFA/person	40.9 m ² GFA/person	-	23.3 m ² GFA/person	-	21.8 m ² GFA/persor

Tall Timber: Mass Timber for High-Rise Buildings:

Case Study Mass Timber Information

Mass Timber Information												
Mass timber												
Floors (CLT)	Levels 3 to 11	Levels 7 to 25	Levels 3 to 18	Levels 3 to 10	-	Levels 2 to 24	-		Levels 3 to 13	Levels 2 to 4	Levels 3 to 9	4. C
Framed floors (LVL)	-	-	-	-	Levels 7 to 22	-	-	Levels 2 to 11		-	-	•
Columns (GLT)	Levels 2 to 10	Levels 7 to 25	Levels 2 to 18	•	•	Levels 1 to 24	Levels 1 to 7	Levels 1 to 17	Levels 2 to 13 -	Levels 1 to 4 and levels 19 to 20	•	Levels 1 to 14
Columns (PSL)	-		Levels 2 to 5	-	-						-	-
Beams (GLT)	Levels 2 to 10	Levels 7 to 25	-	-	-	-	Levels 1 to 7	Levels 1 to 17	Levels 2 to 13	Levels 1 to 4		Levels 1 to 14
Core (CLT)	Levels 2 to 11		-	Levels 2 to 10	-			Levels 1 to 18		Levels 1 to 20	Levels 2 to 9	Levels 1 to 14
Modules (GLT/ CLT)	-	a.	-	-	•					Levels 6 to 18		-
Braces (GLT)	Levels 1 to 10		-		-	-		Levels 1 to 18		-		Levels 1 to 14
Walls (CLT)		- C	-	Levels 2 to 10	•			•	Levels 2 to 13		Levels 2 to 9	
Roofs (CLT)	-	*	-	Levels 6 to 10	-		-	-	-	-	-	-
Façade	-	-	-	-	-	Levels 1 to 24	-	-	-	-	-	-
Pergola (GLT)	-	-	-	-	-		-	Level 18	-		-	
Balconies (CLT)	-	- 21 - C	-	×	-	20	-	20		22	-	Levels 2 to 14
Concrete												
Foundations	1	1	1	1	Foundations	1	1	1	Raft foundation	1	1	1
Floors	Levels -1 to 2	Levels 1 to 6	Level 1	Levels -1 to 1	Levels -1 to 6	Levels -2 to 24	Levels -1 to 1	Levels -1 and 12 to 18	Levels -1 to 1	Levels -1 to 1, 5, 19, and 20	Levels 1 to 2	Levels -1 to 1
Columns	Levels -1 to 1	Levels 1 to 6	Level 1	Level -1	Levels -1 to 6	Levels -2 to -1	-	•	Levels -1 to 1	Level -1	-	Level -1
Beams:	Levels -1 to 1	Levels 1 to 6	-	•	-	Levels 1 to 24	Perimeter edge beams: Levels 1 to 7	•		•		÷
Cores:	Levels -1 to 1	Levels 1 to 25	Levels 1 to 18	Level 1	Levels -1 to 22	Levels 1-24	Levels 1 to 7	-	Levels -1 to 1	-	Level 1	-
Transfer slab	-		Level 2	Level 2		-	-	-	Level 2	-	-	-
Structural floor topping	-		-	-	-	(T)	Levels 2 to 7	*	-	-	-	37.5
Walls	-	*	-	-	-	-	-				Level 1	-
Steel												
Columns	Level 11	*	Perimeter Angles	-	Levels 7 to 22		-		-	Levels 1, 19 to 20	-	
Beams	-	8	-	-	Levels 7 to 22		-		Beams connecting the concrete transfer slab and CLT walls: Level 2		-	-
Roof framing	Level 11		Yes	×	-		-		-		-	* .
Box Truss	-		•	÷	-	•	-		•	Level 5	•	-
Total mass timber volume	6,206 m ³	7,371 m ³	2,283 m ³	3,958 m ³	472 m ³	4,633 m ³	264 m ³	2,654 m ³	2,923 m ³	12,022 m ³	901 m ³	925 m ³
Total mass timber volume/gross floor area	0.38 m ³ /m ²	0.15 m ³ /m ²	0.15 m ³ /m ²	0.24 m ³ /m ²	0.02 m ³ /m ²	0.19 m ³ /m ²	0.11 m ³ /m ²	0.23 m ³ /m ²	0.25 m ³ /m ²	0.43 m3/m2	0.33 m ³ /m ²	0.11 m ³ /m ²
Total mass timber volume/gross floor area Total mass timber weight	0.38 m ³ /m ² 2,978,880 kg	0.15 m ³ /m ² 3,511,331 kg	0.15 m ³ /m ² 1,075,222 kg	0.24 m ³ /m ² 1,900,000 kg	0.02 m ³ /m ² 240,720 kg	0.19 m ³ /m ² 2,177,214 kg	0.11 m ³ /m ² 136,034 kg	0.23 m ³ /m ² 1,177,000 kg	0.25 m ³ /m ² 1,199,513 kg	0.43 m ³ /m ² 5,169,460 kg	0.33 m ³ /m ² 432,480 kg	0.11 m ³ /m ² 414,000 kg

Case Study Mass Timber Information: **Timber Quantities**

	25 King	Ascent	Brock	Dalston	De Karel	НоНо
Volume (m ³)	6,206	7,371	2,283	3,958	472	4,633
Vol/.GFA (m ³ / m ²)	0.38	0.15	0.15	0.24	0.02	0.11
Weight (kg)	2,978,880	3,511,331	1,075,222	1,900,000	240,720	2,177,214
Ave. kg / m ²	181	73	71	113	10	87

	LCT One	Mjost.	Origine	Sara K.	Stadthaus	Treet
Volume (m ³)	264	2,654	2,923	12,022	901	925
Vol/.GFA (m ³ /m ²)	0.11	0.23	0.25	0.43	0.33	0.11
Weight (kg)	136,034	1,177,000	1,199,513	5,169,460	432,480	2,177,214
Ave. kg / m ²	59	103	104	185	157	87

Tall Timber: Mass Timber for High-Rise Buildings:

Cost Considerations

Example: Comparison of construction costs of Brock Commons Tallwood House, a mass timber student-housing high-rise, and Ponderosa Cedar House, a conventional concrete building of the same size, in Vancouver.

Construction Cost Comparison									
	Brock Commo	ons, July 2017	Ponderosa Cedar I	House, July 2017	% Difference				
	CA\$	US\$*	CA\$	US\$*	%				
Procurement and general requirements	3,661,566	2,819,398	3,374,663	2,598,491	109%				
Concrete	3,694,268	2,844,586	6,628,694	5,104,094	56%				
Metal	910,565	701,135	432,487	333,015	211%				
Wood and plastics	3,731,316	2,873,113	746,563	574,854	500%				
Thermal and moisture protection openings	5,253,529	4,045,217	5,131,827	3,951,507	102%				
Openings	2,053,890	1,581,495	2,076,157	1,598,641	99%				
Finishes	4,979,374	3,834,118	3,860,899	2,972,892	129%				
Furnishings	2,130,925	1,640,812	1,475,266	1,135,955	144%				
Mechanical	6,304,947	4,854,809	5,996,830	4,617,559	105%				
Electrical	3,510,015	2,702,712	3,135,210	2,414,112	112%				
Misc. Costs	4,277,944	3,294,017	4,821,870	3,712,840	89%				
Total Construction Cost	40,508,329	31,191,413	37,110,466	29,013,959	108%				

*Costs are in July 2017 CA\$, converted to July 2017 US\$ at exchange rate CA\$1 = USD\$0.77

8% construction cost premium for choosing timber

Tall Timber: Mass Timber for High-Rise Buildings: Construction Costs Comparison

Construction Costs

	25 King Brisbane, Australia	Brock Commons Vancouver, Canada	LCT One Dornbirn, Austria	Mjøstårnet Brumunddal, Norway	Origine Québec, Canada
Total Construction Cost (US\$)	46,251,405 (Oct. 2018 US\$)	31,191,413 (July 2017 US\$)	5,913,892 (Sept. 2012 US\$)	45,051,868 (March 2019 US\$)	16,113,963 (Oct. 2017 US\$)
Inflation Value (US\$)	1.17	1.21	1.28	1.17	1.20
Total Construction Cost (December 2022 US\$)	54,114,144	37,741,610	7,569,782	52,710,686	19,336,756
Total Construction Cost per Unit Area (2022 US\$/m ²)	3,290	2,496	3,264	4,591.52	1,675

Tall Timber: Mass Timber for High-Rise Buildings: Carbon Considerations

Example: Total embodied carbon estimates for Brock Commons Tallwood House, Vancouver, based on life cycle analysis modules.

Total Embodied Carbon (kg CO ₂ eq), Based on EBD (Environmental Building Declaration) Modules									
Phases	Modules	Brock Commons		Ponderosa	% Difference				
		Estimated GHG emissions (kg CO ₂ eq)	Normalized to floor area (kg CO ₂ eq/m²)	Estimated GHG emissions (kg CO ₂ eq)	Normalized to floor area (kg CO ₂ eq)	Difference normalized to floor area			
Manufacturing and	A1 Raw material supply A2 Transport A3 Manufacturing	2,690,000	178.0	3,440,000	268.0	66%			
Construction	A4 Transport	159,000	10.5	124,000	9.7	109%			
	A5 Construction installation process	183,000	12.1	185,000	14.4	84%			
	B2 Maintenance	30,600	2.0	36,100	2.8	72%			
Use	B3 Repair	480,000	31.7	500,000	38.9	82%			
	B4 Replacement	1,020,000	67.5	872,000	67.9	99%			
	C1 Deconstruction	109,000	7.2	120,000	9.3	77%			
Find of Life	C2 Transport	51,400	3.4	51,800	4.0	84%			
End of Life	C3 Waste processing	17,100	1.1	15,500	1.2	94%			
	C4 Disposal	18,700	1.2	26,500	2.1	60%			
Results	Total estimated GHG emissions	4,760,000	315.0	5,370,000	418.0	75%			

75% reduction in GHG emissions compared to concrete alternative

Tall Timber: Mass Timber for High-Rise Buildings:

Transportation Paths

Approximate routes taken by the raw materials and prefabricated components of the 12 case studies in the guide.

Tall Timber: Mass Timber for High-Rise Buildings:

Transportation Paths

Example: Mjøstårnet

Tall Timber: Mass Timber for High-Rise Buildings: Carbon Emissions and Storage

Carbon Emissions and Storage							
	25 King Brisbane, Australia	Brock Commons Vancouver, Canada	Dalston Works London, United Kingdom	LCT One Dornbirn, Austria	Origine, Québec, Canada	Sara Kulturhus Skellefteå, Sweden	Stadthaus London, United Kingdom
Total estimated embodied GHG emissions (kg CO ₂ eq)	8,105,839	4,760,000	-	583,650	1,787,942	4,827,903	-
Total estimated embodied GHG emissions per unit area (kg CO ₂ eq/m²)	493	315	-	329	155	172	-
Carbon Storage							
Total carbon sequestered within structural timber	4,399,056	1,753,000	3,560,000	245,441	2,166,995	8,017,188	718,667
Net carbon emissions of the structure (total emissions minus sequestration)	3,706,783	3,007,000	-925,000	338,209	-379,053	-3,189,285	-
Total carbon emissions avoided by using timber over conventional materials	8,020,786	610,000	-	250,100	907,639	4,592,926	682,620

The Elephant in the Room

Fire Restrictions

Ministry of Housing, Communities & Local Government	
Ministry of Housing, Communities and Local Government	
Final Impact Assessment: Ban on combustible materials in external wall systems. Building (Amendment) Regulations 2018	
vii. Tim	ber building a. The policy prohibits the use of timber materials in the external wall of buildings within the scope. Currently the number of projects above 18m in height where load bearing structural timber elements are used remains relatively small. The effect of the ban on the use of engineered timber remains limited in the short term. There is however a growing number of buildings above 18m in height using engineered timber as part of their structure. Engineered timber offers an alternative to traditional methods of construction in buildings within the scope of the policy. It is therefore likely to slow down the use of engineered timber in future development in the medium to long term.

IBC Mass Timber Construction Types

IBC 2021 Fire Rating Requirements

Building Element	I-A Unlimited stories, heights and areas *	IV-A Max. 18 stories, 270 ft, 324,000 sf**	I-B Max. 12 stories, 180 ft, unlimited areas*	IV-B Max. 12 stories, 180 ft, 216,000 sf**	IV-C Max. 9 stories, 85 ft, 135,000 sf**
Primary Frame	3	3	2	2	2
Exterior Bearing Walls	3	3	2	2	2
Interior Bearing Walls	3	3	2	2	2
Roof Construction	1.5	1.5	1	1	1
Primary Frame at Roof	2	2	1	1	1
Floor Construction	2	2	2	2	2

Assumes an NFPA 13 automatic sprinkler system throughout building

Source: 2021 IBC Tables 504.3, 504.4, 506.2 and 601

*Unlimited building size permitted for most occupancies

**Area limits indicated are per level, assuming no frontage increase; see IBC Tables 504.3, 504.4 and 506.2 for additional details

IBC 2021 Fire Rating Requirements

Type IV-A Fire-Resistance Ratings

Primary Frame (3-hr) + Floor Panel Example (2-hr)

IBC 2021 Fire Rating Requirements

Type IV-B Exposed Fire-Resistance Ratings

Primary Frame (2-hr) + Floor Panel Example (2-hr)

Minimum 1" noncombustible material	
Mass timber floor panel	
2-hr of mass timber FRR; noncombustible material not required	
Glulam beam (primary structural frame) —	
2-hr of mass timber FRR; noncombustible material not required	

Performance-Based Approach

Height	Low-rise	Mid-rise	Tall	Very tall	High-rise
Stories	1–2	3–5	6–8	9–15	>15
Likely escape	Quick escape	Slow escape	Assisted escape	Assisted escape	Difficult escape
No sprinklers	Local areas exposed	No exposed wood	Not allowed	Not allowed	Not allowed
Normal sprinklers	Large areas exposed	Local areas exposed	No exposed wood	Full encapsulation	Full encapsulation
Special sprinklers	Large areas exposed	Large areas exposed	Local areas exposed	No exposed wood	Full encapsulation

Table replicated from Buchanan (2015), showing fire protection based on building height and area of mass timber exposed.

Performance-Based Approach **Fire Testing**

Performance-Based Approach **Fire Testing**

Fire Regrowth Potential – Under-Tested Situation

Of concern is the unpredictability of fire regrowth, if there are large amounts of exposed CLT with adhesives that are prone to char debonding under heating.

- David Barber, Fire Engineer, Arup

Exposed mass timber in a fully-developed fire has been explored through full-scale fire testing, but only in compartments of up to 90 square meters of floor area.

Fire Regrowth Potential – Under-Tested Situation

* Test 1-1: No exposed timber; Test 1-4: CLT Exposed

Fire Testing vs. Proposed and Constructed Buildings

Figure 10. Graph illustrating the discrepancy between the available timber compartment fire tests and the proposed or constructed high-rise mass timber buildings.

Still Aiming High: Tall Timber

Ascent: The Tallest Mass Timber Building in the World

Milwaukee, USA Completion: 2022

Height: 86.6 m; 25 floors Structure: Concrete-Timber Hybrid

Ascent: The Tallest Mass Timber Building in the World

Completion: 2022 Height: 86.6 m; 25 floors Structure: Concrete-Timber Hybrid

Ascent: The Tallest Mass Timber Building in the World

Completion: 2022 Height: 86.6 m; 25 floors Structure: Concrete-Timber Hybrid

Still Aiming High

dezeen **GO** Next story

Schmidt Hammer Lassen unveils design for world's tallest timber building

f 🗸 🖗 🎯 🛈 C

James Parkes | 14 April 2022 | 22 comments

Danish studio Schmidt Hammer Lassen has revealed its design for a 100-metre-tall housing block in Switzerland, which will be the world's tallest timber building when it completes.

Named Rocket&Tigerli, the terracotta-clad building is set to be built on a former industrial site in the city of Winterthur, near Zurich.

It will be comprised of four volumes of different heights, one of which will rise to 100 metres tall making it the world's tallest building with a load-bearing timber structure.

Still Aiming High

FACTS	METRICS	
HEIGHT 182.6 m / 599 ft	:	SFLOORS 42
Official Name 🕕		Atlassian Central
Other Names 🛈		Atlassian Global Headquarters, Railway Square YHA, Western Gateway Block A, Central Place Sydney Block A
Name of Complex	i	Central Place Sydney
Type 🕕		Building
Status 🕕		Under Construction
Expected Comple	tion	2027
Country i		Australia
City 🕕		Sydney
Address		8-10 Lee Street
Function i		Office / Hotel
Structural Materia	í	Concrete-Steel-Timber Composite

Atlassian Central:

Potential Future Tallest Mass Timber Building in the World (Currently Under Construction)

Still Aiming High

SHARE 18

LINKEDIN FACEBOOK TWITTER

M EMAIL

in

PRINT

🎇 The Urban Developer World's Tallest Timber Tower Planned For Perth

PLANNING TED TABET WED 20 APR 22

World's Tallest Timber Tower Planned for Perth

The tallest timber building in the world will rise in Perth, if approved, after a \$350-million development application was lodged by Melbourne's Grange Development.

The developer has submitted plans with the City of South Perth for a 50-storey hybrid timber tower comprising 245 apartments at 6 Charles Street.

At a height of almost 183 metres, the development, to be known as C6, will lay claim to be the tallest timber building in the world, outreaching Atlassian's approved skyscraper in Sydney's Tech Central precinct by three metres.

TOP STORIES

[+] Billionaire Philanthropist Reveals Next Design Statement

Featured Research: Current Mass Timber Research Projects

CTBUH Research Project: **The Future Potential of Steel-Timber Hybrid Buildings**

Project Start: July 2021 Project Completion: December 2023

construct**steel**

CTBUH Research Project: **The Future Potential of Steel-Timber Hybrid Buildings**

Coming in 2024...

Includes:

- Detailed Case Studies
- Data!
- Full LCA Scenarios
- Recommendations/Methodology

See:

ctbuh.org/research/projects/thefuture-potential-of-steel-timberhybrid-buildings

The Future Potential of Steel-Timber Hybrid Buildings: World's 5 Tallest Mass Timber Buildings Employing Steel

70.5 m

72.8 m

69.7 m

55.0 m

48.0 m

The Future Potential of Steel-Timber Hybrid Buildings: **The Initial Case for Steel-Timber Hybrid Buildings**

Assumptions being tested by current CTBUH research

- Greater spanning strength and ductility (than timber alone)?
- Better lateral restraint systems, especially for taller buildings?
- Better Carbon / LCA implications (than concrete-timber hybrid)?
- More flexibility with layouts, and later renovations / change of use?
- Ease of assembly and lower weight (than concrete-timber hybrid)?
- Greater dimensional accuracy, steel akin to mass timber?
- The greater potential for aesthetic expression of timber / biophilic benefits?

Greater spanning strength and ductility

Building: 843 N. Spring Street Location: Los Angeles, California Floors: 5 Function: Office Status: Complete

Better suitability for lateral restraint systems

Building: Atlassian Central Location: Sydney, Australia Height: 182.6m Function: Mixed-Use (Office over Hotel) Status: Under Construction

Better life cycle assessment implications

Building: Sara Kulturhus Location: Skellefteå, Sweden Height: 72.8m Function: Mixed-Use Status: Complete (2021)

More flexibility for layouts, renovations, future use

Building: De Karel Doorman Location: Rotterdam, Netherlands Height: 70.5 Function: Residential / Retail Status: Completed

Lower weight for greater height

Building: 55 Southbank Location: Melbourne, Australia Height: 69.7m Function: Mixed-Use (Hotel over Office) Status: Complete (2020)

Greater dimensional accuracy

Building: Opalia Location: Paris, France Floors: 8 Function: Office Status: Complete (2017)

Aesthetic expression of timber and biophilic benefits

Building: Ascent Location: Milwaukee, Wisconsin Height: 86.6m Function: Residential Status: Completed (2022)

Inherent Fire Resistance

Building: Terminus Location: Victoria, Canada Floors: 5 Function: Office Status: Complete

Better Floor-to-Floor Heights

Building: Opalia Location: Paris, France Floors: 8 Function: Office Status: Complete (2017) The Future Potential of Steel-Timber Hybrid Buildings:

Parameters of Steel-Timber Life Cycle Carbon and Cost Assessment (LCCA)

- Material & Structural System Comparisons
- Real vs. Generic Scenarios
- Whole Building vs Structure
- Location
- Height / Floor Count
- Function
- Embodied vs Operating
- Whole life / end-of-life
- Platform(s) / Software(s)

20 Stories (Scenario 1) and 40 Stories (Scenario 2)

- 20 Stories (Scenario 3) and 40 Stories (Scenario 4)
- Steel Beams Only (3a & 4a); Steel Beams w/ Secondary Timber Beams (3b & 4b)

20 Stories/Timber Columns (Scenario 5) and 40 Stories/Steel Columns (Scenario 6)

20 Stories (Scenario 7) and 40 Stories (Scenario 8)

20 Stories (Scenario 1) and 40 Stories (Scenario 2)

- 20 Stories (Scenario 3) and 40 Stories (Scenario 4)
- Steel Beams Only (3a & 4a); Steel Beams w/ Secondary Timber Beams (3b & 4b)

20 Stories/Timber Columns (Scenario 5) and 40 Stories/Steel Columns (Scenario 6)

20 Stories (Scenario 7) and 40 Stories (Scenario 8)

The Future Potential of Steel-Timber Hybrid Buildings: **Evaluations and Comparison Being Conducted**

6	~	6	Internet	Туре	Floors	Schedule	Vertical Volue	me	Density		Weight	Type	Floors	Schedule	Horiz	ontal olume	Density	w	ight .	Туре	Material	Floor Assembly Area		Volume	Den	nsity	Weig	pha	firm
1 2	015 Grid	20	Concrete Core	Steel Columns	1 to 10	W14X159	4.82	6.30	KQ/III.S ID/I	103	NG ID	Steel Beams	1 to 10	W18X40	5.2	5 VE3 0 6.80	KR/INS ID/VO3		10	Composite Metal Deck Slab 5 1/4"	Lightweight concrete	38400 4133	13.76 41	m3 w03 39.82 5414.67	1762.03 2	2970.00	7294482.25 1	0	Glotman Simpson; Thornton Tomasetti
						W14X283	25.69	33.60						W21X44 W24X55	29.9	39.20					Metal deck Mesh?	38400 4133	13.76				506209.19	116001.15	
					11 to 20	W14X50	2.45	3.20	\vdash			-	11 to 20	W27X84 W18X40	6.2	7 8.20 L 7.60					Studs?								
						W14X159	8.64	11.30						W21X44	33.3	43.60													
						WI4AI45	3.36	5.20						W27X84	7.0	9.20													
2 2	1015 Grid	40	Concrete Core	Steel Columns	1 to 10	W14X342	9.33	12.20	7800	3550	26.26 783579.85	Steel Beams	1 to 10	W18X40	5.2	6.80	7800	860537.07	1897157.25	Composite Metal Deck Slab 5 1/4"	Lightweight concrete	76800 8266	57.52 82	79.64 10829.34	1762.03 2	2970.00	14588964.50 3	2163153.20	Glotman Simpson; Thornton Tomasetti
						W14X605	49.54	64.80						W21X44 W24X55	29.9	7 39.20					Metal deck Mech?	76800 8266	7.52				1012418.39 2	232002.30	
												-		W27X84	6.2	8.20					Studs?								
					11 to 20	W14X257 W14X426	38.69	50.60					11 to 20	W18840 W21844	33.2	5 43.50													
														W24355 W27384	11.9	5 15.60 5 9.10													
					21 to 30	W14X159	4.82	6.30				1	21 to 30	W18X40	5.8	1 7.60													
						(14) (14)	10.00	33,80						W24X55	11.9	15.60													
					31 to 40	W14X90	2.68	3.50			_	1	31 to 40	W27X84 W18X40	7.0	9.20 1 7.60													
						W14X145 W14X159	8.72	11.40 6.30						W21X44 W24X55	33.3	3 43.60 3 15.60													
								105.05	7600	11077				W27884	7.0	9.20	7000	17///07.00	1000100.00										
3 2	1015 Grid	20	Concrete Core	Steel Columns	1 to 10	W14X257	30.92	40.44	7800	1163	-5.35 2015085.00	Steel Beams	1 to 20	W27X94	123.9	162.06	7800	1/04007.30	207//02.00	Concrete over 7-ply CLT	2" (S0.8 mm) Concrete topping	38400 4133	13.76 22	27.20 2913.07	2322.68 3	3915.00	5173062.96 1	1404654.33	Fast+Epp; Taylor Thomson Whitting
						тот	r.							W27X102 W27X129	46.4	60.76 1 30.62					"8" 1203.2 mml Cross-laminated timber	38400 4133	13.76 78	22.88 10205.78	500.00 8	142.78	3301640.00	601199.14	
					11 to 20	W14X132	15.86	20.74																					
						107	r. (6 70	(1.10	7600		1014 104430 70				143.7	110.44	7000	1711303.07	11110/0										
4 2	1015 Grid	40	Concrete Core	Steel Columns	1 to 10	W14X550	66.24	86.64	1000		100-100-100.00	Steel Beams	1 to 40	W27X84	426.6	558.06	7800	1911576.07	eret the set	Concrete over 5-ply CLT	2" (SD.8 mm) Concrete topping	76800 8266	7.52 44	54.40 5826.13	2322.68 3	1915.00	10346125.93 2	2809308.66	Fast+Epp: Taylor Thomson Whitting
						тот	r.							W27x102 W27x129	92.91 46.83	0 121.51 2 61.24					~5" (127 mm) Cross-laminated timber	76800 8266	7.52 97	53.60 12757.22	500.00 8	142.78	4876800.00	0751498.92	
					11 to 20	W14X398	47.84	62.57	1																				
						TOT	r																						
					21 to 30	W14X257	30.92	40,44																					
					31 to 40	TOT W14X132	r. 15.86	20.74	1																				
						TOT	r. 160.86	210.40	7800	12	4708 2766154.35			TOT.	566.3	740.81	7800	4417857.49	9739696.97										
5 5	ubdivided	20	Concrete Core	Timber Columns	1 to 10 11 to 20	GL141/4X 28 1/2 GL141/4X 15	1110.87	1452.96 764.81				Timber Beams	1 to 20	GL6 3/4 X 27	62.6	82.00				Concrete over 5-ply CLT	3" (76.2 mm) Concrete topoing 6 7/8" (174.6 mm) Cross-laminated timber	38400 4133 38400 4133	13.76 29 13.76 67	26.08 3827.17 34.64 8769.33	2322.68 3 500.00 8	1915.00 842.78	6796334.44 1 3352320.00 7	4983356.21 390597.29	DCI Engineers; Mott MacDonald
						TOT	1695.61	2217.78	750	12713	19 68 2803636 60			TOL	1253.8	7 1640.00	750	940402.48	2073230 11										
6 5	ubdivided	40	Concrete Core	Steel Columns	1 to 10	W12X190	15.27	19.97				Timber Beams	1 to 40	GL6 3/4 X 27	62.7	2 82.04				Concrete over 5 ply CLT	3" (76.2 mm) Concrete topping	76800 8266	7.52 58	52.16 7654.33	2322.68 3	3915.00	13592668.89 2	9966712.41	DCI Engineers; Mott MacDonald
					21 to 30	W12X105	8.52	11.14													6778 1174.6 milli Cross-aminated umder	78800 8200	1.52 1.54	/3.28 1/358.0/	50000	144.70	6704640.00	4761134.36	
					31 to 40	W12X58 TOT	4.66 f. 40.67	6.10 53.19	7800	3172	23.66 703846			TOT.	2508.9	5 3281.60	750	1881722.42	4148482.87										
7 5	ubdivided	20	Concrete Core	Steel Columns	1 to 10	W14X99	2.97	3.88				Steel Beams	1 to 20	W21X44	111.6	5 146.03				6" Composite Metal Deck Slab	Lightweight concrete Metal dock	38400 4133	13.76 37	50.60 4918.67	1762.03 2	2970.00	6626285.40 1	4608455.08	Buro Happold; Ramboll
						W14X176	10.59	13.85							-	10.00					Mesh?	30400 4155					500105.15	11000115	
						W14X257 W14X211	6.34	8.29													Stusy								
					11 to 20	W14X145 W14X61	6.55	8.57																			1	15724456.23 18310685.57	
						W14X82	1.23	1.61																				4.30	
						W14X109	3.27	4.28																				4.30	
						W14X132 TOT	7.93 f. 83.01	10.37 108.57	7800	6516	76.61 1436701			TOT.	156.4	204.69	7800	1228506.4	2708393										
8 5	ubdivided	40	Concrete Core	Steel Columns	1 to 10	W14X193 W14X283	5.80	7.59 8.36				Steel Beams	1 to 40	W21X44 W24X55	223.25 89.71	292.00				6" Composite Metal Deck Slab (3" LWC / 3" 18 GA. MDI	Lishtweisht concrete Metal deck	76800 8266	7.52 75	21.20 9837.34	1762.03 2	2970.00	13252570.80 2	9216910.16	Buro Happold; Ramboll
						W14X311	23.36	30.56													Mesh?	100							
						W14X426	20.65	16.72													011051								
					11 to 20	W14X550 W14X145	33.12	43.32	1																				
						W14X211	3.17	4.15																					
						W14X257	15.46	20.22																					
						W14X311 W14X398	9.35 23.92	12.22 31.29																					
					21 to 30	W14X99 W14X159	2.97	3.88																					
						W14X176	10.59	13.85																					
						W14X211	15.46	8.29																					
					31 to 40	W14X145 W14X61	6.55	8.57																					
						W14X82	1.22	1.60																					
						W14X109	3.27	4.28																					
						1w14X132 TOT	7.93 r. 264.72	346.24	7800	20780	68.13 4581356			TOT.	312.9	409.32	7800	2457013.25	5416787										

The Future Potential of Steel-Timber Hybrid Buildings: Collecting & Processing EPDs

Researchers are still collecting and evaluating more EPDs

The Future Potential of Steel-Timber Hybrid Buildings: Collecting & Processing EPDS

	HOT- ROLLED	HOLLOW	STRUCTURAL	WELDED
NORTH AMERICA	3	6	7	-
EUROPE	1	1	4	-
OCEANIA	3	-	-	2
ASIA	-	2	5	-
GLOBAL	5	-	4	-

Researchers are still collecting and evaluating more EPDs

The Future Potential of Steel-Timber Hybrid Buildings: Collecting & Processing EPDs

Researchers are still collecting and evaluating more EPDs

Featured Event: Reframed: The Future of Cities in Wood

Reframed: The Future of Cities in Wood Lecture Series

REFRAMED AND RECOVERED: A CONVERSATION WITH THE CURATORS

PROGRAMS & EVENTS – REFRAMED AND RECOVERED: A CONVERSATION WITH THE...

TALKING TIMBER: WILL CHICAGO EMBRACE WOODEN HIGH-RISES?

PROGRAMS & EVENTS – TALKING TIMBER: WILL CHICAGO EMBRACE WOODEN HIGH-RISES?

TALKING TIMBER: DESIGNING FUTURE CITIES IN WOOD

M − PROGRAMS & EVENTS − TALKING TIMBER: DESIGNING FUTURE CITIES IN WOOD

Join us in picturing a future of cities cast in wood. Our panel of international architects and researchers will unveil transformative development plans, skyscrapers, and cuttingedge innovations harnessing mass timber for sustainable growth.

ATE	September 19, 2023
ME	6:00 pm
RICE	Free, RSVP
EET	Chicago Architecture Center Gand Lecture Hall and Zoom Virtual Event

REGISTER

Reframed: The Future of Cities in Wood Skyscraper Gallery Exhibition

Become a Member of CTBUH

Lead the Global Urban Conversation

CTBUH focuses on the inception, design, construction, and operation of tall buildings and the urban environment.

CTBUH members shape the future of cities by:

- Driving Thought Leadership
- Empowering the Industry
- Growing a Global Network
- Setting Standards for Excellence

Join Now

ctbuh.org/get-involved

