

Solutions for Building Technology

From Forest to Skyline Exploring the Future of wood engineering and High-Rise Wooden Buildings

MEng. Sivert Knutsen Technical consultant - Rothoblaas

Rothoblaas

ALPINE HEART INTERNATIONAL SPIRIT

- Full-service provider of construction materials.
- The cutting edge of construction materials and technology

USE OF WOOD

The construction industry is targeted as a big polluter – in forms of resource extraction, processing and landfill waste.

However, building with timber, especially when it's locally sourced, immediately **lowers the carbon footprint** of the building and actually **captures carbon** in the processed wood materials – which in turn results in positive forestry practices to grow more material.

A truly renewable resource.

 \bigcirc

CONCRETE

 $385 \text{ KG CO}_2/\text{m}^3$

BRICK

375 KG CO₂/m³

TIMBER -800 KG CO₂/m³

USE OF WOOD IN HIGH RISE BUILDINGS

- The edge of engineering craftsmanship
- New demands on connection.
- Problems relates to:
 - Comfort
 - Outdated Regulation
 - Lack of standardisations

Sara Kulturhus Sweden (2021) 72.8m CLT Construction

Mjøstårnet Norway (2019) 85.4m Frame construction

Construction types

• Platform/shell structure

•

• hybrid structure

Construction types fastening

Platform/shell structure

- Wood-Wood
- Stiff connections
- Angular brackets
- Screws

Frame construction

- Wood-Wood
- Force transmission
- Steel plates with dowels
- Brackets
- Screws

Hybrid structure

- Wood-Steel
- Wood-concrete
- Composite action
- Brackets
- Special connections

Connectors screws

Connectors screws

9

Moisture variations affect the strength of connections

∆u=6%

 $F_{v} + 10\% F_{v}$

∆u=6%

Fax + 90% Fax

+90%

↓↓ Fax

THEORY | SHRINKAGE AND SWELLING | 29

 $\rightarrow \xrightarrow{F_V}$

Smartbook

28 | SHRINKAGE AND SWELLING | THEORY

Connectors screws

Wide range of certification

- Wood-Wood
- Wood-panel
- Wood-steal

Calculation help **My Project** Download for free at Rothoblaas website

SOFTWARE

10

Connectors screws

ETA Certification

- End grain capacity
- Reinforcement
- Stiffness calculation

Annex C Compression reinforcement

"VGS", "VGZ", "VGZH" and "VGSH" screws with a full thread or "RTR" threaded rods may be used for reinforcement of timber members with compression stresses at an angle α to the grain of $45^{\circ} < \alpha < 90^{\circ}$. The compression force must be evenly distributed over all screws or threaded rods.

Reinforced end-bearings

Reinforced centre-bearings

CONNECTION STIFFNESS

The sliding module can be calculated according to ETA-19/0706, with the following expressions:

K_{ax,ser} = 150 kN/mm

$$K_{v,ser} = K_{lat,ser} = \frac{\rho_m^{1.5} \cdot d}{23} \, kN/mm$$

 $K_{v,ser} = K_{lat,ser} = 70 \cdot d^2 kN/mm$

For shear stressed connectors in timber-to-timber joints

· d² kN/mm For shear stress

For shear stressed connectors in steel-to-timber joints

where:

- d is the bolt diameter in mm;
- ρ_m is the average density of the main element, in kg/m³.

members at an angle of $0^{\circ} \le \alpha \le 90^{\circ}$ to the grain shall be calculated according to EN 1995-1-1:2008 from:

$$F_{ax,\alpha,Rk} = \frac{n_{ef} \cdot k_{ax} \cdot f_{ax,k} \cdot d \cdot \ell_{ef}}{k_{\beta}} \left(\frac{\rho_{k}}{\rho_{a}}\right)^{0,8}$$
[N]

QUALITY AND DESIGN

Fine balance between

strength and ductility

f_yk = 1000N/mm2

A screw should never snap

EVO = C4 coating Coating is tested for 1440 hours of salt spray

CHAT

Connectors screws

Connectors screws

Why use full threaded screws compared to partial threaded screws

- Up to 125% better vibration reduction (K_ij acoustics) than partial threaded connections
- Reduces the risk of assembly errors
- Perfect for most joints and reinforcements.
- Increased strength

APPLICATION EXAMPLE

TIMBER-TO-TIMBER SHEAR CONNECTION

Connection with VGZ total thread connectors

Connection with HBS partially thread screws

VGZ

Connectors screws

HBS PLATE

Steel-wood application

- Risk construction
- Special design fasteners
- High capacity
- Hybrid structures

NOTE! Always specify torque for timber-steel connections with screws. Can be found in datasheets and ETA

Connectors screws

VGU + VGS= Hybrid structures

NOTE! Always specify torque for timber-steel connections with screws. Can be found in datasheets and ETA

ULLER CALLER CALLER

Connectors screws

Example 6 x VGU 11 + VGS11300 $3^{0,9} = 2,68$ **S**_{PLATE} 6,88 2,68 * 2 * 26,52 = 142 kN 9,33 11,79 $R_{\nu,d} = \frac{0.8 * 142}{1.3} = 87.4 \ kN$ 14,24 16,70 19,15 $\frac{R_{V,k} \cdot k_{mod}}{\gamma_{M}} = 2 min$ $\frac{R_{tens,k \ 45^{\circ}}}{\gamma_{M2}} = 4 min$ 87,4 kN $\min\left\{\frac{26,87*6}{1,2} = 124\ kN\right.$ $R_{V,d} = min$ $= 0/, 4 \kappa N$ 1,3

TIMBER-TO-STEEL APPLICATION

RECOMMENDED INSERTION MOMENT: Mins

NOTE! Always specify torque for timber-steel connections with screws. Can be found in datasheets and ETA

VGS Ø9 VGS Ø11 L < 400 mm VGS Ø11 L ≥ 400 mm VGS Ø13

Building high rise construction

- The difficulties ?
- Lack of knowledge ?
- Lack of solutions?
- Price ?

WHT

- Concrete to timber
- Perfect for CLT
- Easy assembly
- Characteristic load capacities
 up to 144,8 kN
- K1,ser available

WHT

WHT PLATE C

Angular brackets

- Concrete to timber
- Perfect for CLT
- Easy assembly
- Characteristic load capacities up to 68,1 kN
- K1,ser available

Example WHT 620 (WHT620)

$$R_{d} = \min \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases} \qquad R_{d} = \min \begin{cases} \frac{106,2 * 0,8}{1,3} = 65,35kN \\ \frac{85,2}{1,2} = 71kN \\ 78,4kN \end{cases}$$

WHT620 - with WHTW70 washer (M20) R_{1.K} TIMBER R_{1.K} STEEL R_{1.d} CONCRETE holes fastening Ø5 R_{1,k timber} R_{1,d uncracked} R_{1,k steel} R_{1,d cracked} R_{1,d seismic} configuration HYB-FIX 8.8 VIN-FIX 5.8 HYB-FIX 5.8 ØxL type n_v ØxL ØxL ØxL [kN] [mm] [pcs] [kN] [kN] [kN] [mm] [mm] [kN] Ysteel [mm] 55 Ø4,0 x 40 86,4 LBA nails total fastening Ø4,0 x 60 55 106,2 M20 x 330 **78,4** M20 x 330 **81,3** M20 x 495 **55,3** 85,2 washer WHTW70 **Ү**м2 M20 x 245 56,6 M20 x 245 69,8 M20 x 330 37,3 86,4 Ø5,0 x 40 55 血 M20 anchor screws LBS Ø5,0 x 50 55 106,2 Ø4,0 x 40 35 55,0 LBA nails partial fastening Ø4,0 x 60 35 67,6 M20 x 330 **78,4** M20 x 330 **81,3** M20 x 495 **55,3** washer WHTW70 85,2 **Υ**M2 Ц M20 x 245 56,6 M20 x 245 69,8 M20 x 330 37,3 Ø5,0 x 40 35 55,0 M20 anchor screws LBS 35 Ø5,0 x 50 67,6

F₁ $\mathbf{\Lambda}$

Alu Start

- Easy assembly
- High strength
- Good thermal properties
- Industrialized way of construction
- Perfect for the building of tomorrow!

The basic behind construction

- Load path
- Force transition
- Have control over fibre directions
- Consistency is important

Construction

21

Construction

Brackets for frame construction

ALUMINI/MEDI/MAXI

- Concealed brackets
- Possible to apply on steel and concrete
- Fibre direction decide nailing pattern
- Fire safety
- Good drawing makes prefabrication possible

L F_V

SOFTWARE

ALUMEGA

- Concealed brackets
- Possible to apply on steel and concrete
- Fire safety
- Less prefabrication needed

Construction

Construction

24

Brackets for frame construction

PRELIMINARY STRUCTURAL VALUES | Fv

ALUMEGA

- Concealed brackets
- Possible to apply on steel and concrete
- Fire safety
- Less prefabrication needed
- Allows rotation

TYPE		single connector		double connector		triple connector	
Н		ULS - F _{v/Rk}	ASD - F _v	ULS - F _{v,Rk}	ASD - F _v	ULS - F _{v,Rk}	ASD - F _v
[mm]	[in]	[kN]	[lbs]	[kN]	[lbs]	[kN]	[lbs]
240	9 1/2	90 - 140	5,500 - 9,000	180 - 280	11,000 - 18,000	270 - 420	16,500 - 27,000
360	14 1/4	140 - 210	8,500 - 13,500	280 - 420	17,000 - 27,000	420 - 630	25,500 - 40,500
480	19	180 - 280	11,500 - 18,500	360 - 560	23,000 - 37,000	540 - 840	34,500 - 55,500
600	23 5/8	230 - 350	14,500 - 23,000	460 - 700	29,000 - 46,000	690 - 1050	43,500 - 69,000
720	28 3/8	280 - 420	17,500 - 27,500	560 - 840	35,000 - 55,000	840 - 1260	52,500 - 82,500
840	33 1/16	330 - 490	20,500 - 32,000	660 - 980	41,000 - 64,000	990 - 1470	61,500 - 96,000

INSTALLATION TOLERANCES

PILLAR and SPIDER

Construction

PILLAR and SPIDER

- Punching reinforcement
- Load transfer longitudinal- longitudinal
- Remove the need for beams

PILLAR and SPIDER

Construction

28

Construction

Brackets for CLT construction

TITAN and NINO

- High capacity up to 100kN wood-wood
- K1,ser available
- Price worthy

Construction

Brackets for CLT construction

SLOT

- New opportunities
- Increased prefabrication
- Reduced assembly time
- Maximum strength

Construction

31

Construction

32

Brackets for CLT construction

LOCK – LOCKFLOOR

- Easy installation ٠
- High strength .
- Available in EVO ٠
- Easy to disassemble •
- Perfect for tomorrow's construction! ٠

Solutions for hybrid structures

TC-FUSION

- Makes concrete-wood ranforced connections
- Open up a new area for hybrid structures
- ETA certified
- Wide span of applications

Construction

Construction

34

Solutions for hybrid structures

TC-FUSION

- Makes concrete-wood ranforced connections
- Open up a new area for hybrid structures
- ETA certified
- Wide span of applications

What can we do with these solutions?

- Stronger connection
- Combining the best from all materials
- Standardised solutions make's it simpler and more cost effective

Holzpak - Ermanno Acler

Hoho - Matthias Rinnhofer

Want to discuss different solutions?

• Take contact with your local Rothoblaas agent

Want to explore our product?

- Book a CPD with your Rothoblaas agent
- Check out our website

Want to explore mass timber?

- Book your ticket to the next mass timber seminar
- Invest in your knowledge book your ticket to the TEEW

Solutions for Building Technology

Thank you for your attention

rothoblaas

Solutions for Building Technology

Timber engineer Sivert Knutsen Sivert.knutsen@rothoblaas.com